If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2=-6x
We move all terms to the left:
3x^2+2-(-6x)=0
We get rid of parentheses
3x^2+6x+2=0
a = 3; b = 6; c = +2;
Δ = b2-4ac
Δ = 62-4·3·2
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*3}=\frac{-6-2\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*3}=\frac{-6+2\sqrt{3}}{6} $
| 3(x2+5)-6=(9x+18) | | 2.2+10m=7.79 | | -18-8(-m+17)=8-m | | 10-5(-7s-13)=20s | | 4w-13=11 | | 4(x+9)=2x−6 | | x(x^2-4x+1)=-6 | | 3(3w-4)=-12 | | y/3-8=9 | | -4+8+18y=4(y-19)+18y | | 8x-(6×-4)=10 | | 40=-4.9t^2+30t | | 8(2z+5)=12+18z-6 | | -5(2p-18)+10=2(-2p+5) | | 2/h+2h=9 | | 2x^2+4x=25 | | 2(-2v-1)=-5(2v+1)+9v | | 20=-4.9t^2+30t | | x+-0.9=2.8 | | -8-15g=-2(6g-20) | | 12+4x-x2=0 | | 5(2x+3)-23=1/3(4x+6)+8 | | P=185+0.03x | | -16-q-13=2(2q+20)+16 | | x-x(0.1)=200 | | 4^8x=255 | | -6(-k+7)=9k | | 5x+7+3x-9=90 | | 1/2(6x+4)=13 | | -15.5b=-11.16-16.7b | | 1.25+4x=1+6x | | 7.34-15.7q=-19.7q+11.34 |